
Graphs – Shortest Path (Weighted Graph)
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Shortest Path on Weighted Graphs

 BFS finds the shortest paths from a source node s to 

every vertex v in the graph.

 Here, the length of a path is simply the number of edges 

on the path.

 But what if edges have different ‘costs’? 
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Weighted Graphs

 In a weighted graph, each edge has an associated numerical 

value, called the weight of the edge

 Edge weights may represent, distances, costs, etc.

 Example:

 In a  flight route graph, the weight of an edge represents the 

distance in miles between the endpoint airports
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Shortest Path on a Weighted Graph 

 Given a weighted graph and two vertices u and v, we want to find 
a path of minimum total weight between u and v.

 Length of a path is the sum of the weights of its edges.

 Example:

 Shortest path between Providence and Honolulu

 Applications

 Internet packet routing 

 Flight reservations

 Driving directions
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Shortest Path:  Notation

 Input:
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Shortest-path weight from  to :u v
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Shortest path from  to  is any path  such that ( ) ( , ).u v p w p u v

Directed Graph ( , )G V E

   Edge weights w :E®



Shortest Path Properties

Property 1 (Optimal Substructure):

A subpath of a shortest path is itself a shortest path

Property 2 (Shortest Path Tree):

There is a tree of shortest paths from a start vertex to all the other vertices

Example:

Tree of shortest paths from Providence
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Shortest path trees are not necessarily unique

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.



Optimal substructure:  Proof

 Lemma:  Any subpath of a shortest path is a shortest path

 Proof:  Cut and paste.

   Now suppose there exists a shorter path x ®

¢p
xy

® y .

Then ( ) ( ).xy xyw p w p 

Construct p :

Then ( ) ( ) ( ) ( )ux xy yvw p w p w p w p     ( ) ( ) ( )ux xy yvw p w p w p   ( ).w p

So p wasn't a shortest path after all!

Suppose this path  is a shortest path from  to .p u v

Then ( , ) ( ) ( ) ( ) ( ).ux xy yvu v w p w p w p w p    



Shortest path variants

 Single-source shortest-paths problem: – the 

shortest path from s to each vertex v.

 Single-destination shortest-paths problem: Find a 

shortest path to a given destination vertex t from 

each vertex v. 

 Single-pair shortest-path problem: Find a shortest 

path from u to v for given vertices u and v. 

 All-pairs shortest-paths problem: Find a shortest 

path from u to v for every pair of vertices u and v. 



Negative-weight edges

 OK, as long as no negative-weight cycles are reachable 

from the source.

 If we have a negative-weight cycle, we can just keep going 

around it, and get w(s, v) = −∞ for all v on the cycle.

 But OK if the negative-weight cycle is not reachable from the 

source.

 Some algorithms work only if there are no negative-weight edges 

in the graph.



Cycles

 Shortest paths can’t contain cycles:

 Already ruled out negative-weight cycles.

 Positive-weight:  we can get a shorter path by omitting the cycle.

 Zero-weight: no reason to use them  assume that our solutions 

won’t use them.
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Output of a single-source shortest-path algorithm

For each vertex v in V:

d[v] = δ(s, v).

Initially, d[v]=∞.

Reduce as algorithm progresses. 

But always maintain d[v] ≥ δ(s, v).

Call d[v] a shortest-path estimate.

π[v] = predecessor of v on a shortest path from s.

If no predecessor, π[v] = NIL.

π induces a tree — shortest-path tree.



Initialization

All shortest-path algorithms start with the 

same initialization:

INIT-SINGLE-SOURCE(V, s)

for each v in V

do d[v]←∞

π[v] ← NIL

d[s] ← 0



Relaxing an edge

 Can we improve shortest-path estimate for v by first going to u

and then following edge (u,v)?

RELAX(u, v, w)

if d[v] > d[u] + w(u, v) then 

d[v] ← d[u] + w(u, v)

π[v]← u



General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE

2. Relax Edges

Algorithms differ in the order in which edges are 

taken and how many times each edge is relaxed.
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Example 1.   Single-Source Shortest Path 

on a Directed Acyclic Graph

 Basic Idea:  topologically sort nodes and relax in linear 

order.

 Efficient, since δ[u] (shortest distance to u)  has already 

been computed when edge (u,v) is relaxed.

 Thus we only relax each edge once, and never have to 

backtrack.



Example:  Single-source shortest paths in a directed 

acyclic graph (DAG)

 Since graph is a DAG, we are guaranteed no 

negative-weight cycles.

 Thus algorithm can handle negative edges
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Correctness:  Path relaxation property

0 1 0Let ,  ,  . . . ,   be a shortest path from   .k kp v v v s v to v  

0 1 1 2 -1If we relax, in order, ( , ),  ( , ),  . . . ,  ( , ), k kv v v v v v

even intermixed with other relaxations,

then [ ]  ( ,  ).k kd v s v



Correctness of DAG Shortest Path Algorithm

 Because we process vertices in topologically sorted 

order, edges of any path are relaxed in order of 

appearance in the path.

Edges on any shortest path are relaxed in order.

By path-relaxation property, correct.
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Example 2.  Single-Source Shortest Path on 

a General Graph (May Contain Cycles)

 This is fundamentally harder, because the first paths we 

discover may not be the shortest (not monotonic).



Dijkstra’s algorithm (E. Dijkstra,1959)

 Applies to general, weighted, directed or 

undirected graph (may contain cycles).

 But weights must be non-negative. (But they 

can be 0!)

 Essentially a weighted version of BFS.

 Instead of a FIFO queue, uses a priority queue.

 Keys are shortest-path weights (d[v]).

 Maintain 2 sets of vertices:

 S = vertices whose final shortest-path weights are 

determined.

 Q = priority queue = V-S.
Edsger Dijkstra



Dijkstra’s Algorithm:  Operation 

 We grow a “cloud” S of vertices, beginning with s and eventually 

covering all the vertices

 We store with each vertex v a label d(v) representing the distance of v

from s in the subgraph consisting of the cloud S and its adjacent vertices

 At each step

 We add to the cloud S the vertex u outside the cloud with the smallest 

distance label, d(u)

 We update the labels of the vertices adjacent to u

S

7

9

¥

¥11

1

4

s



Dijkstra’s algorithm

 Dijkstra’s algorithm can be viewed as greedy, since it always 
chooses the “lightest” vertex in V − S to add to S.



Dijkstra’s algorithm:  Analysis

 Analysis:

 Using minheap, queue operations takes O(logV) time

( )O V

(log )O V ( ) iterationsO V

(log )O V ( ) iterationsO E

Running Time is ( log )O E V



Example

  

White Û  Vertex ÎQ =V -S

Grey Û  Vertex = min(Q)

Black Û  Vertex ÎS, Off Queue

Key:
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Djikstra’s Algorithm Cannot Handle Negative Edges

3

2

-2

s

1

x y z



Correctness of Dijkstra’s algorithm

 Loop invariant: d[v] = δ(s, v) for all v in S.

 Initialization: Initially, S is empty, so trivially true.

 Termination: At end, Q is empty S = V  d[v] = δ(s, v) for all v in V.

 Maintenance:

 Need to show that 

 d[u] = δ(s, u) when u is added to S in each iteration.

 d[u] does not change once u is added to S.



Correctness of Dijkstra’s Algorithm:  Upper Bound Property

 Upper Bound Property:

1. [ ] ( , )d v s v v V  

• Proof:

By induction.

 [ ] ( , )  immediately after initialization, since

[ ] 0 ( ,

Base Cas :
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  Suppose

Inductive Step:

 [ ] ( , )d x s x x V

( , ) ( , )s u w u v 

( , )s v

If [ ] changes, then [ ] [ ] ( , )d v d v d u w u v 

Suppose we relax edge ( , ).u v

2. Once [ ] ( , ),  it doesn't changed v s v

A valid path from s to v!



Correctness of Dijkstra’s Algorithm

When  is added to Clai , [ ] (m  ): ,u S d u s u

Let  be first vertex in  on shortest path to  y V S u

Let  be the predecessor of  on the shortest path to x y u

 [ ] ( , ) when  is added toCl :  .aim d y s y u S

Proof:

[ ] ( , ),  since x .d x s x S 

( , ) was relaxed when  was added to x y x S [ ] ( , ) ( , ) ( , )d y s x w x y s y    

Handled

Let  be the first vertex added to  

such tha

Proof by Con

t [ ] ( , ) when  is added.

tradiction: u S

d u s u u

Optimal substructure 

property!



Correctness of Dijkstra’s Algorithm
Thus [ ] ( , ) when  is added to .d y s y u S

[ ] ( , ) ( , ) [ ] (upper bound property)d y s y s u d u    

But [ ] [ ] when  added to d u d y u S

Thus [ ] ( , ) ( , ) [ ]!d y s y s u d u   

Thus when  is added to ,  [ ] ( , )u S d u s u

There is a shortest path to  such that the predecessor of  [ ]

Conse

 whe

quences

n  is added to .

:

u u u S u S 

 [ ]u

2The path through  can only be a shortest path if [ ] 0.y w p

Handled



Correctness of Dijkstra’s algorithm

 Loop invariant: d[v] = δ(s, v) for all v in S.

 Maintenance:

 Need to show that 

 d[u] = δ(s, u) when u is added to S in each iteration.

 d[u] does not change once u is added to S.

Thus once [ ] ( , ), it will not be changed.d v s v

 can only decRelax(u rease ],v,w) [ .d v

upper bound prBy the , operty [ ] ( , ).d v s v
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