Graphs — Shortest Path (Weighted Graph)

Outline

» The shortest path problem

» Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)
O Shortest path on a general graph: Dijkstra’s algorithm

Outline

» The shortest path problem

» Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)
O Shortest path on a general graph: Dijkstra’s algorithm

Shortest Path on Weighted Graphs

» BFS finds the shortest paths from a source node s to
every vertex v in the graph.

» Here, the length of a path is simply the number of edges
on the path.

» But what if edges have different ‘costs’?

Weighted Graphs

» In a weighted graph, each edge has an associated numerical
value, called the weight of the edge

» Edge weights may represent, distances, costs, etc.

» Example:

O In a flight route graph, the weight of an edge represents the
distance in miles between the endpoint airports

Shortest Path on a Weighted Graph

» Given a weighted graph and two vertices u and v, we want to find
a path of minimum total weight between u and v.

O Length of a path is the sum of the weights of its edges.
» Example:

 Shortest path between Providence and Honolulu
» Applications

O Internet packet routing

O Flight reservations

 Driving directions

Shortest Path: Notation

> Input:

Directed Graph G =(V,E)
Edge weights w: E — [

k
We|9h1. Of p(l'l'h P =<< Vo:Vlf---ka > = ZW(V,-_I,V,-)
i=1

Shortest-path weight from u to v :

p
d(uv)=: min{w(p): u—>--—>v} if$apathu—---—v,

| o otherwise.
Shortest path from u to v is any path p such that w(p) = o(u,v).

Shortest Path Properties

Property 1 (Optimal Substructure):

A subpath of a shortest path is itself a shortest path
Property 2 (Shortest Path Tree):

There is a tree of shortest paths from a start vertex to all the other vertices
Example:

Tree of shortest paths from Providence

Shortest path trees are not necessarily unique

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.

Optimal substructure: Proof

» Lemma: Any subpath of a shortest path is a shortest path

» Proof: Cut and paste.

Suppose this path p is a shortest path from u to v.

Then s(uv)=w(p)=w(p,)+w(p,)+w(p,).
Py

Now suppose there exists a shorter path x —» --- > y.

Then w(p,,) <w(p,,).

Construct p”

Then w(p')=w(p,)+w(p,)+w(p,) < w(p,)+w(p,)+w(p,) =w(p).

So p wasn't a shortest path after all!

Shortest path variants

» Single-source shortest-paths problem: — the
shortest path from s to each vertex v.

» Single-destination shortest-paths problem: Find a
shortest path to a given destination vertex t from
each vertex v.

» Single-pair shortest-path problem: Find a shortest
path from u to v for given vertices u and v.

» All-pairs shortest-paths problem: Find a shortest
path from u to v for every pair of vertices u and v.

Negative-weight edges

» OK, as long as no negative-weight cycles are reachable
from the source.

O If we have a negative-weight cycle, we can just keep going
around it, and get w(s, v) = — for all v on the cycle.

O But OK if the negative-weight cycle is not reachable from the
source.

 Some algorithms work only if there are no negative-weight edges
in the graph.

Cycles

» Shortest paths can’t contain cycles:
1 Already ruled out negative-weight cycles.
[Positive-weight: we can get a shorter path by omitting the cycle.

 Zero-weight: no reason to use them - assume that our solutions
won't use them.

Outline

» The shortest path problem

» Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)
O Shortest path on a general graph: Dijkstra’s algorithm

Output of a single-source shortest-path algorithm

» For each vertex vin V:

Qd[v] = &(s, V).
< Initially, d[v]=.

<>Reduce as algorithm progresses.
But always maintain d[v] =2 &(s, v).

<-Call d[v] a shortest-path estimate.

T1r[v] = predecessor of v on a shortest path from s.
<-If no predecessor, 1T[v] = NIL.

<-1r induces a tree — shortest-path tree.

Initialization

» All shortest-path algorithms start with the
same Initialization:

INIT-SINGLE-SOURCE(V, s)

foreachvinV
do d[v]«e
m[v] < NIL

dis] 0

Relaxing an edge

» Can we improve shortest-path estimate for v by first going to u
and then following edge (u,v)?

RELAX(u, v, w)
If d[v] > d[u] + w(u, v) then
d[v] <« d[u] + w(u, V)

'IT[V]<— u

o

O——C &——®

: RELAX(1,v,w) : RELAX(1,v,w)

General single-source shortest-path strategy
1. Start by calling INIT-SINGLE-SOURCE
2. Relax Edges

Algorithms differ in the order in which edges are
taken and how many times each edge is relaxed.

Outline

» The shortest path problem

» Single-source shortest path
O Shortest path on a directed acyclic graph (DAG)
O Shortest path on a general graph: Dijkstra’s algorithm

Example 1. Single-Source Shortest Path
on a Directed Acyclic Graph

» Basic ldea: topologically sort nodes and relax in linear
order.

» Efficient, since 8[u] (shortest distance to u) has already
been computed when edge (u,v) Is relaxed.

» Thus we only relax each edge once, and never have to
backtrack.

Example: Single-source shortest paths in a directed
acyclic graph (DAG)

» Since graph is a DAG, we are guaranteed no
negative-weight cycles.

» Thus algorithm can handle negative edges

Algorithm

DAG-SHORTEST-PATHS (G, w, 5)

| topologically sort the vertices of G

2 INITIALIZE-SINGLE-SOURCE(G, s)

3 for each vertex u, taken in topologically sorted order
4 do for each vertex v € Adj[u]

5 do RELAX (u, v, w)

Time: OV +E)

Example

Example

Example

(d)

Example

Example

Example

Correctness: Path relaxation property

Let p =<v,, v;, ..., v, > be ashortest path from s =v, to v,.
If we relax, in order, (v,,v,), V;,V,), ..., (V,1.V.),

even intermixed with other relaxations,

then d[v,] = o(s, v,).

Correctness of DAG Shortest Path Algorithm

» Because we process vertices in topologically sorted
order, edges of any path are relaxed in order of
appearance in the path.

 =>Edges on any shortest path are relaxed in order.

L =By path-relaxation property, correct.

Outline

» The shortest path problem

» Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)
O Shortest path on a general graph: Dijkstra’s algorithm

Example 2. Single-Source Shortest Path on
a General Graph (May Contain Cycles)

» This is fundamentally harder, because the first paths we
discover may not be the shortest (not monotonic).

Dijkstra’s algorithm (E. Dijkstra,1959)

» Applies to general, weighted, directed or
undirected graph (may contain cycles).

» But weights must be non-negative. (But they
can be 0!)

» Essentially a weighted version of BFS.
O Instead of a FIFO queue, uses a priority queue.

 Keys are shortest-path weights (d[v]).

» Maintain 2 sets of vertices:

S = vertices whose final shortest-path weights are

determined.
Edsger Dijkstra

1 Q = priority queue = V-S.

Dijkstra’s Algorithm: Operation

» We grow a “cloud” S of vertices, beginning with s and eventually
covering all the vertices

» We store with each vertex v a label d(v) representing the distance of v
from s in the subgraph consisting of the cloud S and its adjacent vertices

» At each step

1 We add to the cloud S the vertex u outside the cloud with the smallest
distance label, d(u)

O We update the labels of the vertices adjacent to u

Dijkstra's algorithm

DIIKSTRA(G, w, §)

1 INITIALIZE-SINGLE-SOURCE(G, s5)
2 S <«

3 0 <« VI[G]

4 while Q #£ 0

5 do u < EXTRACT-MIN(Q)

6 S «— S U {u)

7 for each vertex v € Adj[u]

3 do RELAX(u, v, w)

= Dijkstrd's algorithm can be viewed as greedy, since it always
chooses the “lightest” vertex inV - S to add to S.

Dijkstra's algorithm: Analysis
Analysis:

Using minheap, queue operations takes O(logV) time

DIIKSTRA(G, w, §)

S «— S U {uj
for each vertex v € Adj[u]
do RELAX (i, v, w) O(logV) xO(E) iterations

I INITIALIZE-SINGLE-SOURCE(G, 5)O(V)

2 S <0

3 0 <« VI[G]

4 while Q # 0/

5 do u < EXTRACT-MIN(Q) O(logV)xO(V) iterations
6

7

8

— Running Time is O(ElogV)

Example Gl \White < Vertex eQ=V-S

Djikstra’s Algorithm Cannot Handle Negative Edges

Correctness of Dijkstra’s algorithm

DIJKSTRA(G, w, §)

1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S <0
3 0 <« VI[G]
while O #
~ do u +— EXTRACT-MIN(Q)
S «— S U {uj
for each vertex v € Adj[u]
do RELAX(u, v, w)

S0 -1 O L

> Loop invariant: d[v] = &(s, v) forall vin S.
O Initialization: Initially, S is empty, so trivially true.
O Termination: Atend, Q isempty 2S =V - d[v] =9(s, v) forall vin V.

L Maintenance:

< Need to show that
% d[u] = &(s, u) when u is added to S in each iteration.
% d[u] does not change once u is added to S.

Correctness of Dijkstra’s Algorithm: Upper Bound Property
» Upper Bound Property:

1.d[v]>d(s,v)VVv eV
2. Once d[v] =o(s,v), it doesn't change

* Proof:
By induction.
Base Case: d[v] > o(s,v)VVv €V immediately after initialization, since

d[s]=0=4(s,s)
d[v] =WV #5s

Inductive Step:
Suppose d[x] = o(s,x)Vx eV
Suppose we relax edge (u,v).

If d[v] changes, then d[v] =d[u] +w(u,V)

A valid path from s to v!
> 5(s,u)+w(u,v)<f-

>0(S,V)

Correctness of Dijkstra’s Algorithm
Claim: When u is added to S, d[u] = 6(s,u)

Proof by Contradiction: Let u be the first vertex added to S
such that d[u] # o(s,u) when u is added.

Lety be first vertex in V —S on shortest path to u
Let X be the predecessor of y on the shortest path to u

Claim: d[y] = &(s,y) when u is added to S. Optimal substructure

Proof: property!
d[x] = d(s,x), since x € S.

(x,y) was relaxed when x was added to S — d[y] = (s, x)+wW(X,y) =(S,y)

Handled

Correctness of Dijkstra’s Algorithm

Thus d[y] =96(s,y) when u is added to S.
DUKSTRA(G, w, §)

— d[y] = d(s,y) < 6(s,u) <d[u] (upper bound property) 1 INITIALIZE-SINGLE-SOURCE(G, s)
2 S«

But d[u] <d[y] when u added to S 3 Q0 « VI[G]
I Ry
do u < EXTRACT-MIN(Q)

Thus d[y] = d(s,y) = 6(s,u) =d[u]!

6 S «— S U {u}
_ 7 for each vertex v € Adj
Thus when u is added to S, d[u] = o(s,u) 8 do RELA;(L‘ v, wj)[u]

Consequences:
There is a shortest path to u such that the predecessor of u z[u] €S when u is added to S.

The path through y can only be a shortest path if w[p,]=0.

Handled \

Correctness of Dijkstra’s algorithm

DIIKSTRA (G, w, §)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S <0

3 0 <« VI[G]

4 while Q # ¢/

5 do u < EXTRACT-MIN(Q)

0 S S U{u] Relax(u,v,w) can only decrease d[v].

7 for each vertex v € Adj[u

8 < :dEl-RELAK(M, v, w): = By the upper bound property, d[v] = &(s,v).

Thus once d[v] = 6(s,v), it will not be changed.
» Loop invariant: d[v] = &(s, v) forall vin S.

J Maintenance:

<> Need to show that
< d[u] = 8(s, u) when u is added to S in each iteration. \/

< 3 d[u] does not change once u is added to S. - =) ?
- i T N - ’ -

Outline

» The shortest path problem

» Single-source shortest path
 Shortest path on a directed acyclic graph (DAG)
O Shortest path on a general graph: Dijkstra’s algorithm

