
Graphs – Shortest Path (Weighted Graph)

ORD

DFW

SFO

LAX

Outline

 The shortest path problem

 Single-source shortest path

 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

Outline

 The shortest path problem

 Single-source shortest path

 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

3

Shortest Path on Weighted Graphs

 BFS finds the shortest paths from a source node s to

every vertex v in the graph.

 Here, the length of a path is simply the number of edges

on the path.

 But what if edges have different ‘costs’?

s

v

(,) 3s v (,) 12s v

2
s

v

2

5
1

7

Weighted Graphs

 In a weighted graph, each edge has an associated numerical

value, called the weight of the edge

 Edge weights may represent, distances, costs, etc.

 Example:

 In a flight route graph, the weight of an edge represents the

distance in miles between the endpoint airports

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

Shortest Path on a Weighted Graph

 Given a weighted graph and two vertices u and v, we want to find
a path of minimum total weight between u and v.

 Length of a path is the sum of the weights of its edges.

 Example:

 Shortest path between Providence and Honolulu

 Applications

 Internet packet routing

 Flight reservations

 Driving directions

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

Shortest Path: Notation

 Input:

0 1 1
1

Weight of path , ,..., (,)
k

i ik
i

p v v v w v v

Shortest-path weight from to :u v

d (u,v) = min{w (p) : u ®

p

®v } if $ a path u ® ®v ,

¥ otherwise.

ì

í
ï

î
ï

Shortest path from to is any path such that () (,).u v p w p u v

Directed Graph (,)G V E

 Edge weights w :E®

Shortest Path Properties

Property 1 (Optimal Substructure):

A subpath of a shortest path is itself a shortest path

Property 2 (Shortest Path Tree):

There is a tree of shortest paths from a start vertex to all the other vertices

Example:

Tree of shortest paths from Providence

ORD
PVD

MIA
DFW

SFO

LAX

LGA

HNL

Shortest path trees are not necessarily unique

Single-source shortest path search induces a search tree rooted at s.

This tree, and hence the paths themselves, are not necessarily unique.

Optimal substructure: Proof

 Lemma: Any subpath of a shortest path is a shortest path

 Proof: Cut and paste.

 Now suppose there exists a shorter path x ®

¢p
xy

® y .

Then () ().xy xyw p w p

Construct p :

Then () () () ()ux xy yvw p w p w p w p () () ()ux xy yvw p w p w p ().w p

So p wasn't a shortest path after all!

Suppose this path is a shortest path from to .p u v

Then (,) () () () ().ux xy yvu v w p w p w p w p

Shortest path variants

 Single-source shortest-paths problem: – the

shortest path from s to each vertex v.

 Single-destination shortest-paths problem: Find a

shortest path to a given destination vertex t from

each vertex v.

 Single-pair shortest-path problem: Find a shortest

path from u to v for given vertices u and v.

 All-pairs shortest-paths problem: Find a shortest

path from u to v for every pair of vertices u and v.

Negative-weight edges

 OK, as long as no negative-weight cycles are reachable

from the source.

 If we have a negative-weight cycle, we can just keep going

around it, and get w(s, v) = −∞ for all v on the cycle.

 But OK if the negative-weight cycle is not reachable from the

source.

 Some algorithms work only if there are no negative-weight edges

in the graph.

Cycles

 Shortest paths can’t contain cycles:

 Already ruled out negative-weight cycles.

 Positive-weight: we can get a shorter path by omitting the cycle.

 Zero-weight: no reason to use them assume that our solutions

won’t use them.

Outline

 The shortest path problem

 Single-source shortest path

 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

Output of a single-source shortest-path algorithm

For each vertex v in V:

d[v] = δ(s, v).

Initially, d[v]=∞.

Reduce as algorithm progresses.

But always maintain d[v] ≥ δ(s, v).

Call d[v] a shortest-path estimate.

π[v] = predecessor of v on a shortest path from s.

If no predecessor, π[v] = NIL.

π induces a tree — shortest-path tree.

Initialization

All shortest-path algorithms start with the

same initialization:

INIT-SINGLE-SOURCE(V, s)

for each v in V

do d[v]←∞

π[v] ← NIL

d[s] ← 0

Relaxing an edge

 Can we improve shortest-path estimate for v by first going to u

and then following edge (u,v)?

RELAX(u, v, w)

if d[v] > d[u] + w(u, v) then

d[v] ← d[u] + w(u, v)

π[v]← u

General single-source shortest-path strategy

1. Start by calling INIT-SINGLE-SOURCE

2. Relax Edges

Algorithms differ in the order in which edges are

taken and how many times each edge is relaxed.

Outline

 The shortest path problem

 Single-source shortest path

 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

Example 1. Single-Source Shortest Path

on a Directed Acyclic Graph

 Basic Idea: topologically sort nodes and relax in linear

order.

 Efficient, since δ[u] (shortest distance to u) has already

been computed when edge (u,v) is relaxed.

 Thus we only relax each edge once, and never have to

backtrack.

Example: Single-source shortest paths in a directed

acyclic graph (DAG)

 Since graph is a DAG, we are guaranteed no

negative-weight cycles.

 Thus algorithm can handle negative edges

Algorithm

Time: ()V E

Example

Example

Example

Example

Example

Example

Correctness: Path relaxation property

0 1 0Let , , . . . , be a shortest path from .k kp v v v s v to v

0 1 1 2 -1If we relax, in order, (,), (,), . . . , (,), k kv v v v v v

even intermixed with other relaxations,

then [] (,).k kd v s v

Correctness of DAG Shortest Path Algorithm

 Because we process vertices in topologically sorted

order, edges of any path are relaxed in order of

appearance in the path.

Edges on any shortest path are relaxed in order.

By path-relaxation property, correct.

Outline

 The shortest path problem

 Single-source shortest path

 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

Example 2. Single-Source Shortest Path on

a General Graph (May Contain Cycles)

 This is fundamentally harder, because the first paths we

discover may not be the shortest (not monotonic).

Dijkstra’s algorithm (E. Dijkstra,1959)

 Applies to general, weighted, directed or

undirected graph (may contain cycles).

 But weights must be non-negative. (But they

can be 0!)

 Essentially a weighted version of BFS.

 Instead of a FIFO queue, uses a priority queue.

 Keys are shortest-path weights (d[v]).

 Maintain 2 sets of vertices:

 S = vertices whose final shortest-path weights are

determined.

 Q = priority queue = V-S.
Edsger Dijkstra

Dijkstra’s Algorithm: Operation

 We grow a “cloud” S of vertices, beginning with s and eventually

covering all the vertices

 We store with each vertex v a label d(v) representing the distance of v

from s in the subgraph consisting of the cloud S and its adjacent vertices

 At each step

 We add to the cloud S the vertex u outside the cloud with the smallest

distance label, d(u)

 We update the labels of the vertices adjacent to u

S

7

9

¥

¥11

1

4

s

Dijkstra’s algorithm

 Dijkstra’s algorithm can be viewed as greedy, since it always
chooses the “lightest” vertex in V − S to add to S.

Dijkstra’s algorithm: Analysis

 Analysis:

 Using minheap, queue operations takes O(logV) time

()O V

(log)O V () iterationsO V

(log)O V () iterationsO E

Running Time is (log)O E V

Example

White Û Vertex ÎQ =V -S

Grey Û Vertex = min(Q)

Black Û Vertex ÎS, Off Queue

Key:

Example

Example

Example

Example

Example

Djikstra’s Algorithm Cannot Handle Negative Edges

3

2

-2

s

1

x y z

Correctness of Dijkstra’s algorithm

 Loop invariant: d[v] = δ(s, v) for all v in S.

 Initialization: Initially, S is empty, so trivially true.

 Termination: At end, Q is empty S = V d[v] = δ(s, v) for all v in V.

 Maintenance:

 Need to show that

 d[u] = δ(s, u) when u is added to S in each iteration.

 d[u] does not change once u is added to S.

Correctness of Dijkstra’s Algorithm: Upper Bound Property

 Upper Bound Property:

1. [] (,)d v s v v V

• Proof:

By induction.

 [] (,) immediately after initialization, since

[] 0 (,

Base Cas :

[]

e

)

d v s v v V

d s s s

d v v s

 Suppose

Inductive Step:

 [] (,)d x s x x V

(,) (,)s u w u v

(,)s v

If [] changes, then [] [] (,)d v d v d u w u v

Suppose we relax edge (,).u v

2. Once [] (,), it doesn't changed v s v

A valid path from s to v!

Correctness of Dijkstra’s Algorithm

When is added to Clai , [] (m): ,u S d u s u

Let be first vertex in on shortest path to y V S u

Let be the predecessor of on the shortest path to x y u

 [] (,) when is added toCl : .aim d y s y u S

Proof:

[] (,), since x .d x s x S

(,) was relaxed when was added to x y x S [] (,) (,) (,)d y s x w x y s y

Handled

Let be the first vertex added to

such tha

Proof by Con

t [] (,) when is added.

tradiction: u S

d u s u u

Optimal substructure

property!

Correctness of Dijkstra’s Algorithm
Thus [] (,) when is added to .d y s y u S

[] (,) (,) [] (upper bound property)d y s y s u d u

But [] [] when added to d u d y u S

Thus [] (,) (,) []!d y s y s u d u

Thus when is added to , [] (,)u S d u s u

There is a shortest path to such that the predecessor of []

Conse

 whe

quences

n is added to .

:

u u u S u S

 []u

2The path through can only be a shortest path if [] 0.y w p

Handled

Correctness of Dijkstra’s algorithm

 Loop invariant: d[v] = δ(s, v) for all v in S.

 Maintenance:

 Need to show that

 d[u] = δ(s, u) when u is added to S in each iteration.

 d[u] does not change once u is added to S.

Thus once [] (,), it will not be changed.d v s v

 can only decRelax(u rease],v,w) [.d v

upper bound prBy the , operty [] (,).d v s v

?

Outline

 The shortest path problem

 Single-source shortest path

 Shortest path on a directed acyclic graph (DAG)

 Shortest path on a general graph: Dijkstra’s algorithm

